

AMLA: an AutoML frAmework for Neural Networks

AMLA is a framework for implementing and deploying AutoML algorithms for
Neural Networks.

Introduction

AMLA is a common framework to run different AutoML algorithms for neural
networks without changing the underlying systems needed to configure,
train and evaluate the generated networks. This has two benefits: * It
ensures that different AutoML algorithms can be easily compared using
the same set of hyperparameters and infrastructure, allowing for easy
evaluation, comparison and ablation studies of AutoML algorithms. * It
provides a easy way to deploy AutoML algorithms on multi-cloud
infrastructure.

With a framework, we can manage the lifecycle of autoML easily. Without
this, hyperparameters and architecture design are spread out, some
embedded in the code, others in config files and other as command line
parameters, making it hard to compare two algorithms or perform ablation
studies.

Some design principles of AMLA: * The network generation process is
decoupled from the training/evaluation process. * The network
specification model is independent of the implementation of the
training/evaluation/generation code and ML library (i.e. whether it uses
TensorFlow/PyTorch etc.).

AMLA currently supports the NAC using
EnvelopeNets [http://arxiv.org/pdf/1803.06744] AutoML algorithm, and
we are actively adding newer algorithms to the framework. More
information on AutoML algorithms for Neural Networks can be found
here [https://github.com/hibayesian/awesome-automl-papers]

Architectural overview

In AMLA, an AutoML algorithm is run as a task and is specified through a
configuration file. Sample configuration files may be found
here and are described here

When run in single host mode (the default), the system consists of *
Command Line Interface (CLI): An interface to add/start/stop tasks. *
Scheduler: Starts and stops the AutoML tasks. *
Generate/Train/Evaluate: The subtasks that comprise the AutoML task:
network generation (via an AutoML algorithm), training and evaluation.

A more detailed description of the current architecture is available
here

The current branch is limited to operation on a single host i.e. the
CLI, scheduler, generation, training and evaluation all run on a single
host. The scheduler may be run as a service or a library, while the
generate/train and evaluate subtasks are run as processes. A distributed
system that allows concurrent execution of multiple training/evaluation
tasks and distributed training on a pod of machines is under
development.

Contributing

At this point, AMLA is in its early stages. There are several areas in
which development is yet to start or that are under development. If you
would like to contribute to AMLA’s development, please send in pull
requests, feature requests or submit proposals.
Here is how to contribute.

Here are some areas that we need help with: * `New AutoML
algorithms <>`__ Add support for new AutoML algorithms such as NAS,
ENAS, AmoebaNet * `Machine learning frameworks <>`__ Add support for
more machine learning frameworks such as PyTorch etc. * Standard model
format Improve the model
specification (add hyper parameters), support for ONNX, other standard
model specification formats. *
Deployers: Add support for
Kubeflow as a deployer * Front
end: Contribute to ongoing
development using vue.js * `Test scripts <>`__: Regression scripts,
please! * Documentation: Documentation, please!

Proposals in progress are here ## Installation

Prerequisites:

Current AMLA supports Tensorflow as the default machine learning
library. To install Tensorflow, follow the instructions here: -
https://www.tensorflow.org/install/install_linux#InstallingVirtualenv
to install TensorFlow in a virtualenv for GPU/CPU. - Alternatively, use
an AWS DeepLearning AMI on an AWS GPU instance:
http://aws.amazon.com/blogs/machine-learning/get-started-with-deep-learning-using-the-aws-deep-learning-ami/

Install

git clone https://github.com/ciscoai/amla

Run the CLI

cd amla/amla
python amla.py

Add/start a task

Run an AutoML algorithm (NAC) to generate/train/evaluate

#amla add_task configs/config.nac.construction.json
Added task: {'taskid': 0, 'state': 'init', 'config': 'configs/config.nac.construction.json'} to schedule.
#amla start_task 0

Start a single train/evaluate run using a network defined in the config file

#amla add_task configs/config.run.json
Added task: {'taskid': 1, 'state': 'init', 'config': 'configs/config.run.json'} to schedule.
#amla start_task <taskid>

Run the test construction algorithm (few iterations, few training steps)

#amla add_task configs/config.nac.construction.test.json
Added task: {'taskid': 2, 'state': 'init', 'config': 'configs/config.nac.construction.test.json'} to schedule.
#amla start_task <taskid>

Run the test training/evaluation task

#amla add_task configs/config.run.test.json
Added task: {'taskid': 3, 'state': 'init', 'config': 'configs/config.run.test.json'} to schedule.
#amla start_task <taskid>

Analyze

tensorboard --logdir=amla/results/<arch name>/results/

Authors

	Utham Kamath pukamath@cisco.com

	Abhishek Singh abhishs8@cisco.com

	Debo Dutta dedutta@cisco.com

If you use AMLA for your research, please cite this
paper

@INPROCEEDINGS{kamath18,
 AUTHOR = {P. Kamath and A. Singh and D. Dutta},
 TITLE = {{AMLA: An AutoML frAmework for Neural Network Design}}
 BOOKTITLE = {AutoML Workshop at ICML 2018},
 CITY = {Stockholm},
 MONTH = {July},
 YEAR = {2018},
 PAGES = {},
 URL = {}
}

Index

Working for Cosmos

Cosmos [http://cosmos.iiits.in] is the Intranet portal for IIITS where all of the required web portals/apps needed by students,
staff and administrators reside.

Setting up Cosmos locally

First thing to begin with, for contributing to Cosmos is setting up its local copy. This step is very important for the developer to make changes and see the results locally. Cosmos code is hosted with the help of Github at Cosmos code [https://github.com/IIITS/cosmos-2.0]. Following steps need to be followed to set up the environment.

	Make a new folder and set up a Python virtual environment.

	Clone the code from repository by typing command git clone https://github.com/IIITS/cosmos-2.0.git.

	Create your topic branch by giving the command git checkout -b branch-name.

	Once the code is cloned and topic branch is created go to folder cosmos-2.0 and type pip install requirements.txt.

	After all dependencies are installed then type ./manage.py makemigrations which will make files for SQL migrations and now give command ./manage.py migrate after which tables will be created in your database locally.

	Now under folder cosmos there will be a file settings.py which needs to be tweaked for static files configurations. This might be a very irritating process for the ones who don’t have idea about Django’s staticfiles since it has not been managed well. Please follow next step.

	So, idea is to have all the staticfiles to be seen by your Django server. In view of this we need to run command ./manage.py collectstatic. But running this command will give error for the static root path. My approach to solve this problem was first commenting out STATICFILES_DIRS variable in settings.py and then running the command and once static files are migrated then uncommenting the line #os.path.join(BASE_DIR, 'staticfiles'),

	After tweaking at this point once you are able to run ./manage.py collectstatic successfully then launch your development server by doing ./manage.py runserver.

Making changes and setting up new portals

After you are able to run cosmos application at your local machine you can start writing new code or making changes but you have to adhere to few things(NOTE: Please have a good knowledge of Django to understand few terms).

	Make use of base template and nav-bars available in templates directory.

	Static files for all app must reside in the folder dedicated to them inside staticfiles directory.

	Before you make any change in the code you have to create your own branch as described in first section also.

Pushing changes on production server

	Once you’ve make the suitable changes and tested enough you can push the changes of your branch.

	After pushing the changes you can create a pull request through Github and merge the request if you have neccessary permissions.

	Now, the overall changes has been made you need to bring it into the production server.

	For this you need to git fetch origin master and then apply git merge origin/master to merge the changes locally. Finally you may run ./manage.py makemigrations && ./manage.py migrate for updating the tables.

	Once all this is done, you need to restart the apache server by issuing command sudo systemctl httpd restart

Managing DNS entries

Managing DNS is super easy for the System Administrators. Our primary DNS entry for web portals
of institutes is iiits.in. For example cosmos.iiits.in [http://cosmos.iiits.in] , myspace.iiits.in [http://myspace.iiits.in] , studyspace.iiits.in [http://studyspace.iiits.in]

Steps to follow

	Log In to DNS Server. IP address of DNS server at time of writing documentation is 10.0.1.2. Server can be logged in by doing SSH to primary server sitting at 10.0.1.29 and then opening the appropriate container.

	Open the iiits.in.forward file located at /var/named/iiits.in.forward using some editor.

	You will find many DNS entries already present out there in the file. Entry will be in the following format [secondary-domain-name] [IN] [record-type] [IP-address].

	Let’s say you want to add test.iiits.in mapping to IP 10.0.3.33. Then the corresponding entry would be test IN A 10.0.3.33.

Writing Documentation

If you have made some contribution to IT infrastructure of IIIT Sri City then surely you need to write documentation about the same so that it can be carried forward by others. Our documentation follows markdown syntax as far as styling is concerned. A brief step wise procedure is listed below.

Setting up the codebase

	First step is to clone this [https://github.com/IIITS/documentation] repository.

	Set up a Python virtual environment locally by issuing the command virtualenv <environment-name>.

	Enter into virtual environment by source <environment-name>/bin/activate and install dependencies by pip install -r requirements.txt.

	Create your own topic branch with git checkout -b <branchname>.

	Once all this is done properly you can perform your first build by doing make html.

Writing Documentation

	Currently, we maintain a separate html file for every module and this html file is generated by rst file.

	You must adhere to the appropriate markdown syntax to get the expected output.

	Once you are done with writing set of docs. You may generate the html locally by doing make html.

	The above command will generate html file which can be further viewed on browser locally.

	Once you’ve fixed all the bugs/errors you may push your branch and submit the pull request.

	Once the administrators accept your pull request, within two minutes changes will be reflected and your documentation page will come up on the website hosted.

Contributing through Git

Virtualization with OpenVZ

Cosmos is the Intranet portal for IIITS where all of the required web portals/apps needed by students,
staff and administrators reside.

 _static/up.png

nav.xhtml

 Table of Contents

 		
 AMLA: an AutoML frAmework for Neural Networks

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

